Posts Tagged ‘control panel’

Hydronic Control Panels – What You Should Expect to Find.

Monday, January 9th, 2012

Hydronic Control Panels
What should you expect to find in a control panel?

WHAT IS THE VALUE OF A HYDRONIC CONTROL PANEL?

The control panel is the heart of the hydronic system. It should include all components that are not only compatible with the rest of the equipment connected to the HVAC system but allow the system to provide optimal performance. It should be easy to install. It should include all mechanical and electrical connection points. It must provide equipment that protects both the system and the home in case of equipment malfunctions. It should provide for ease of serviceability during routine and emergency maintenance. As it is perhaps the most visible system component in a customer installation, it should also provide a clean and professional appearance.

When considering a hydronic control panel design, the following should be taken into consideration:

  • Functionality
  • Installation
  • Durability and Appearance
  • Serviceability

FUNCTIONALITY

By definition the control panel is the main system component where the hydronic system should be controlled or operated from. This means that it should include as many of the system control elements as possible as well as be the electrical center for all equipment attached to the hydronic system.
Standard elements that should be included in a control panel design include: feed water regulator and backflow preventer, expansion tank, air eliminator, zone valves, circulating pumps, pressure gauge, temperature measurement for supply and return with delta, system controls, master power switch, electrical wiring connection points, and fill and flush connections.

Visio-showroom panel labeled.vsd

Basic Elements of a Hydronic Control Panel

Other items that can be included:

  • Fittings for a variety of piping types
  • Strainer or Dirt Separator
  • 3-way or variable speed mixing
  • DHW Piping and controls
  • Heat Exchangers
  • Glycol Feeders

Integrated Control Options

  • Variable Speed Mixing
  • Setpoint Controls
  • Ice and Snow Melting
  • Ecô Energy Management System

Wiring Connection Terminations for:

  • All thermostats and sensors
  • Circulation pumps
  • Actuators
  • All heat pumps, boilers, air handlers, and any other active equipment being controlled in the HVAC system.

INSTALLATION

As all control panels are essentially customized to a specific installation, the contractor essentially has two choices:

Option 1 – Build it on-site:

  • Pre-design or design-on-the-fly
  • Specify and obtain components
  • Work in potentially unconditioned and uncontrolled environment
  • Incur travel & labor costs
  • Test system on site
  • Make any revisions to panel at on-site labor costs plus travel

There are a lot of variables in this equation. Even with experienced personnel, costs can be unpredictable and difficult to control.

Option 2 – Have it designed and fabricated off-site for easy and quick installation:

Using Eagle Mountain/Hydronic Systems this provides the following advantages:

  • Full Control panel is designed and reviewed ahead of time for physical layout, components, connectivity, wiring layout, and panel size – before any fabrication begins.
  • Panel is fabricated in a controlled environment at factory labor rates.
  • All electrical control connection points are brought to a single electrical box mounted on the panel.
  • Panel is tested before leaving the factory.
  • The only labor required on the job site is for mounting the panel and making the physical connections to the rest of the system.
  • Cost of the panel is known up-front. Installation costs are not only predictable and more easily controlled, they are also greatly reduced.

DURABILITY AND APPEARANCE

Panel Material
It is common to find control panels mounted on materials ranging from plywood to steel sheets. While these materials are readily available and may be relatively inexpensive, they are not ideal for hydronic systems. By their nature, hydronic systems involve water. Components can collect moisture on external surfaces that eventually can migrate to other components in the system. This moisture will eventually weaken and warp wood materials potentially compromising the structural integrity of the control panel. Similarly, steel sheets may be subject to corrosion that may also bring similar risks to the structural integrity of the overall control panel.

An ideal material for control panels is a high-density polyethylene (HDPE) board. This material provides adequate strength and stiffness to accommodate all the control panel components, is completely impervious to the effects of moisture, and also provides a professional appearance in the home or facility where the control panel is mounted.

Panel Mounting
Any prefabricated panel should come with a mounting system that allows for simple and quick wall-mounting by one or two people (depending on the size of the panel). Connection to the rest of the system should be simple and easily accomplished once the board is mounted. Remember, one of the primary purposes of the prefabricated hydronic control panel is to reduce on-site labor.

Copper and Brass Handling
During fabrication, the copper and brass components should not be touched by hand due to the salts on the skin, or exposed to environments that can produce oxidation. Fabrication should be done using gloves designed for handling copper and brass that eliminate the salts transfer.

Cleaning
The piping and fittings need to be cleaned of the flux material used during the assembly to prohibit accelerated corrosion of the copper. The copper may also have surface oxidation from the assembly process as well as salts from shipping and/or handling of the copper by hand. These salts will accelerate the oxidation producing discoloration and eventually corrosion of the copper and brass components in the system. The panel should be thoroughly cleaned and polished to prevent any corrosion of the components.

Following installation, the control panel is perhaps the most visible component to any hydronic-based HVAC system. In addition to the serviceability issues discussed above, the value of a clean and well organized control panel that will stand the test of time should serve any contractor well as a showpiece for the type of installation and work that potential customers can expect from them.

SERVICEABILITY

Next to the ease of installation, the most significant criteria in control panel design have to do with serviceability. As the system is mechanical in nature, over time there is a significant likelihood that maintenance of some sort will be required. Chances are, if a service call is required, the first place a technician will need to go is the control panel. A well-designed control panel allows for easy access to all of the system controls in a consistent manner and provides appropriate access to all components. This design should include removable actuators and sufficient valves and drains to isolate any component for service or easy replacement.

Another benefit inherent with pre-fabricated control panels is that the contractor will have access to a drawing of the control panel available to them to review in the event of a service call. Having this information available will help technicians with remote trouble-shooting and save money in service calls benefitting both the business and their customers.

SUMMARY

Together, all of the elements discussed above add up to the value that the hydronic control panel can bring to your business. Each of these elements is important to both the contractor and the end-user. The decisions made around the design and installation of the hydronic control panel can have both immediate and long-term impact to the system functionality as well as to the relationship between the contractor and the system owner. Care should be taken to consider future maintenance as well as potential changes to the system. Weight should be given to the desired optimal performance of the system when determining system components and layout. All electrical wiring and controls need to be taken into account when designing and evaluating control panel solutions. Eagle Mountain’s hydronic control panels provide a high-value solution to any hydronic-based HVAC system.

Geothermal Case Study: Red Tail Ridge

Tuesday, June 15th, 2010
Red Tail Ridge

Red Tail Ridge

Customer: Geocorp

Location: Penn Yan, NY

Project: Red Tail Ridge Winery: HVAC and Wine Process Cooling with: Geothermal, Radiant, HRV, Energy Management

Web:

redtailridgewinery.com


Red Tail Ridge is a Finger Lakes winery using an Eagle Mountain geothermal system for HVAC and process cooling.

An industry leader in sustainability and innovation, the new facility at Red Tail Ridge will be LEED certified and delivers a 40.1% total energy savings.  The system components include geothermal, radiant heating, heat recovery ventilation, and Ecô energy management.

System Background

The system design calls for a 20-ton closed-loop geothermal heat pump system to heat and cool the building, and to provide chilled water for process cooling. The system consists of four (4) 5-ton Cascade water-to-water heat pumps, a horizontal closed-loop “GeoSlinky” ground loop heat exchanger, and a custom Hydronic Control Panel.

Geothermal Heat Pumps

Two geothermal heat pumps are dedicated to space heating and cooling. Radiant floor heating is installed in the process, case and barrel storage, and bottling areas. A fan coil unit provides for cooling and heating loads in the laboratory located on the mezzanine level.

The other two water-to-water heat pumps generate chilled propylene glycol to meet the process cooling requirements of winemaking.

Horizontal Slinky Loop

The horizontal slinky loop consists of eight trenches, each 130 feet long with 4 feet spacing between each trench. The slinky coil is 34- inches in diameter with 18-inches of pitch. A propylene glycol solution is circulated through the ground loop heat exchanger and the water-source heat pumps by a variable flow/variable speed loop pumping system.

Heat Recovery Ventilation

Ventilation air will be introduced into the building through a heat recovery ventilator (HRV). The HRV includes a flat plate heat exchanger that transfers energy between building exhaust and outdoor air streams.

Control System

The entire HVAC system including wine process cooling is controlled by Eagle Mountain’s Ecô energy management system.  This “virtual control device” replaces all hardware control devices and is accessible from any Internet connection in the world.

The Ecô energy management system has additional benefits for Winemakers.  This browser-based system allows the Winemaker to control and monitor the winemaking process remotely. Ecô provides Winemakers an innovative alternative to manual operation of the Winemaking process.

Click to learn more about The Ecô energy management system.

Design & Installation

Eagle Mountain specified the system design, integrated and supplied all components, and provided consulting services for the application of geothermal technologies for LEED certification.

Geocorp, an alternative energy installer located in Western New York, installed the system at Red Tail Ridge.

Hydronic Snow Melt Systems: Say Goodbye to Shovels

Tuesday, June 8th, 2010
Source: Birdman

Source: Birdman

Will your hydronic snow melt system be ready when winter comes and the snow starts to fall? There is an alternative to constant shoveling and de-icing.

Some homeowners and businesses are keeping their concrete driveways and other exterior walkways maintenance-free by installing ice and snow melt systems.

Not only do these in-slab hydronic snowmelt systems eliminate plowing, backbreaking shoveling, and icy spills, they prevent potential damage to the concrete caused by snow-removal equipment and corrosive de-icers.

How Snow Melt Systems Work


The heat element is either hydronic tubing or electric wires. This heat element is embedded in concrete to transfer its heat energy to the slab.

(more…)

Process to change Geothermal from Heating to Cooling

Monday, June 7th, 2010
Jason Murphy

Jason Murphy

Geothermal systems provide both heating and cooling.

If you have a forced-air geothermal system using a water-to-air geothermal heat pump, simply change your thermostats from heating to cooling mode, and you are done. Forced-air geothermal systems are the easiest to change from heating to cooling mode.

Cooling with Hydronic Geothermal Heat Pumps

If you have a radiant heating system, your hydronic geothermal heat pump provides cooling via high-velocity or low-velocity air handlers.

Step 1: Locate your Hydronic Control Panel


If you have a hydronic system, the first step is to locate your hyrdonic control panel in the mechanical room.  You control panel will look like this:

Hydronic Control Panel

Hydronic Control Panel

Step 2: Determine if you have 1 or 2 Tekmar Controls


The device that tells your heat pump to make either hot or cold water is a Tekmar 152 two stage setpoint control.  Your control panel will either have one or two Tekmar controls.

(more…)